推广 热搜: 汽车  汽车销量排行榜  suv销量排行榜  新能源汽车  新能源汽车前十名品牌  宝马x5优惠  保时捷卡宴  保时捷718  8月汽车销量排行榜  保时捷918 

美国大学研发“早鸟法”训练深度神经网络 可减少10.7倍能耗-超级汽车网

   日期:2022-04-26     作者:汽车网  联系电话:浏览:927    

据外媒报道,美国莱斯大学(Rice University)研发了一种高效节能的深度神经网络(DNN)训练方法——称为“Early Bird”(早鸟法),而深度神经网络是自动驾驶汽车、智能助理、面部识别和各种高科技应用背后的一种AI(人工智能)技术形式。

美国大学研发“早鸟法”训练深度神经网络 可减少10.7倍能耗

(图片来源:莱斯大学)

莱斯大学和德克萨斯农工大学的研究人员表示,用Early Bird训练DNN时所消耗的能量可减少10.7倍,而且精度水平与普通的训练方法相同,甚至更好。

研究人员表示:“最近AI技术突破的主要驱动力在于引入了更大、更昂贵的DNN。但是训练此类DNN需要大量的能量。要想推出更多创新产品,必须找到更绿色的训练方法,既要解决环境问题,还需要减少AI研究的财务障碍。”

训练尖端的DNN非常昂贵,而且成本越来越高。2019年的一项研究发现,2012至2018年间,训练一流深度神经网络的计算需求增加了30万倍。另一项研究也表明,训练一个精英款DNN的能耗相当于5辆美国SUV一生的二氧化碳排放量。

DNN包含数百万甚至数十亿个人造神经元,学习执行特殊任务。没有任何明确的编程,由人工神经元构成的深度网络可以通过“学习”大量先前的例子,学习做出与人类类似的决定,甚至还可以超越人类专家。例如,如果一个DNN研究了猫和狗的照片,就会学会识别猫和狗。2015年,一个被训练用于玩棋类比赛的深度神经网络AlphaGo在学习了数万个之前所玩过的棋类游戏后,成功击败了一名职业棋手。

研究人员表示:“目前,最先进的 DNN训练方法称为渐进式修剪与训练。首先,需要训练一个密集、巨大的神经网络,然后移除看起来不重要的部分,就像给一棵树修剪一样。然后,重新训练经过修剪的网络,以恢复其性能,因为修剪之后的性能会下降。在实践中,则需要多次进行修剪,并重新训练,才能获得良好的表现。第一步,即训练密集、庞大的网络,是最昂贵的,因此需要在第一步就确定好最终、功能齐全、经过修剪的网络,即“early-bird ticket”(早鸟票)。”

通过在训练早期寻找关键的网络连接模式,研究人员发现了“早鸟票”的存在,并利用早鸟票简化DNN训练。在各种有关基准数据集合DNN模型的实验中,研究人员们发现,“Early Bird”在最初训练阶段出现的几率只有十分之一,甚至更少。

研究人员表示:“我们的方法能够在训练密集、庞大的网络前,早10%或更早地自动识别出早鸟票。意味着,与训练DNN的传统方法相比,可减少约10%或利用更少的时间来训练DNN,而且可以达到相同甚至更高的精确度,从而既可节省计算、又可节省能耗。”

 
打赏
 
更多>相关资讯

最新发布
推荐资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  RSS订阅  |  违规举报
联系电话:  微信: