推广 热搜: 汽车  汽车销量排行榜  suv销量排行榜  新能源汽车  新能源汽车前十名品牌  宝马x5优惠  保时捷卡宴  保时捷718  8月汽车销量排行榜  保时捷918 

CVPR2020 | 深兰科技夜间检测挑战赛两冠一亚,为自动驾驶保驾护航-轿车网

   日期:2022-05-11     来源:中国农业网    作者:汽车网  联系电话:浏览:810    

近日,由 CVPR 2020 Workshop 举办的 NightOwls Detection Challenge 公布了最终结果。来自深兰科技的 DeepBlueAI 团队斩获了“单帧行人检测”和“多帧行人检测”两个赛道的冠军,以及“检测单帧中所有物体”赛道的亚军。

CVPR2020 | 夜间检测挑战赛两冠一亚,为自动驾驶保驾护航

CVPR2020 | 夜间检测挑战赛两冠一亚,为自动驾驶保驾护航

竞赛的主要目的是进行夜间行人或物体检测,是许多系统,尤其是自动驾驶汽车安全可靠的关键之一。众所周知,熊猫智能公交车是深兰科技自动驾驶核心产品,自2019年获得了广州、长沙、上海、武汉的自动驾驶测试牌照后,今年5月又成功摘得深圳智能网联汽车道路测试牌照。此次冠亚军方案,将与白天行人检测结合,打造适用于不同天气条件的全天候行人检测系统,并有望在熊猫智能公交上进行应用,为其安全行驶保驾护航。

深兰科技坚持以“人工智能,服务民生”为理念,响应国家政策号召,深刻洞察民众痛点和需求,致力于把高质量的人工智能产品和解决方案带给更多的社会大众,以匠心研发的熊猫智能公交车将作为智能城市公共交通领域的“新基建”,用于提升公众出行新体验。

以下将为大家介绍 DeepBlueAI 团队的解决方案。

NightOwls 检测挑战赛简介

检测 RGB 摄像机拍摄的夜间场景图片中的行人,是一个非常重要但是未被充分重视的问题,当前最新的视觉检测算法并不能很好地预测出结果。官方 baseline 在 Caltech(著名行人检测数据集)上的 Miss Rate(越小越好)可以达到 7.36%,但在夜间行人数据集上却只能达到 63.99%。

夜间行人检测是许多系统(如安全可靠的自动驾驶汽车)的关键组成部分,但使用计算机视觉方法解决夜间场景的检测问题并未受到太多关注,因此 CVPR 2020 Scalability in Autonomous Driving Workshop 开展了相应的比赛。

NightOwls Detetection Challenge 2020 共有三个赛题:单帧行人检测(该赛题与 2019 年相同)、多帧行人检测,以及检测单帧中所有物体(包括行人、自行车、摩托车三个类别):

Pedestrian Detection from a Single frame (same as 2019 competition)Pedestrian Detection from a Multiple framesAll Objects Detection (pedestrian, cyclist, motorbike) from a Single frame

赛题介绍

夜间行人数据集示例

Track 1: Pedestrian detection from a single frame

该任务只要求检测行人(对应 Ground truth 中 category_id = 1 的行人类别),且所用算法只能将当前帧用作检测的输入,该题目与 ICCV 2019 NightOwls 挑战赛相同。

Track 2: Pedestrian detection from multiple frames

该任务的要求与任务 1 相同,都是只检测行人,但是该任务允许使用当前帧以及所有先前帧 (N, N-1, N-2, …) 来预测当前帧的行人。

这两个任务的数据集由 279000 张全注释的图片组成,这些图片来源于欧洲多个城市黎明和夜间的 40 个视频,并涵盖了不同的天气条件。

模型效果评估使用的是行人检测中常用的指标Average Miss Rate metric,但是仅考虑高度 > = 50px 的非遮挡目标。

Track 3: All Objects Detection (pedestrian, cyclist, motorbike) from a Single frame

该任务要求检测出帧里所有在训练集中出现过的类别,包括自行车、摩托车,并且不允许使用视频序列信息。

赛题难点

1  2  3  下一页>  
 
打赏
 
更多>相关资讯

最新发布
推荐资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  RSS订阅  |  违规举报
联系电话:  微信: